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The Standard Model complete  
or not? 

•  As of  today, the standard model is the best  
attempt to describe interactions of   
elementary particles 
•  Successfully confirmed by the experimental data 

•  A new boson is discovered with mass ~125 GeV  
whose properties so far are “the SM-like” 

•  The SM is not the ultimate theory 
•  Naturalness problem – fine tuning is needed 

•  Hierarchy problem – why MEW/Mplank ~10-17 

•  What is Dark Matter? 

•  Number of  generations 

•  Are there extra dimensions of  space? etc.. 
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Why the third generation 

•  The Higgs couples to mass, thus 
fermion couplings are the most  
accessible via decays to τ leptons 
and b quarks 

•  Higgs boson(s) from minimal  
supersymmetric models (MSSM)  
have even more enhanced couplings  
to τ leptons and b quarks 

•  If  SUSY is “natural”, light 3rd  
generation squarks can be  
discovered at the LHC in final states with particles from the 
third family of  the SM 
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Why the third generation 

•  Physics with third generation 
is also sensitive to other 
extensions of  the SM 
•  Models with suppressed couplings  

to light fermions: discovery can be 
made only with 3rd generation 

•  Mixing between 3rd and 4th  
generations expected to be large:  
enhanced discovery potential 

•  Symmetry between leptons and  
quarks suggest extra scalar (vector) bosons (leptoquarks): 
recent theoretical studies favor 3rd generation 
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In this presentation 

•  Physics with third generation is challenging but exciting and 
could be sensitive to a number of  SM extensions 

•  In this presentation: 
•  Search for MSSM Higgs boson decaying to pair of  τ leptons 

•  Search for pair production of  third-generation leptoquarks and top 
squarks decaying to pair of  τ lepton and b quark 
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CMS Detector 
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Luminosity 

•  LHC performs incredibly well 

•  CMS detector operates remarkably well 
•  Data-taking efficiency ~95% 

•  More than 97% of  channels are operational 
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Final state objects 

•  Jets originated from hadronization 
of  b quarks – b jets 

•  Missing transverse energy	



•  τ leptons 
 
•  Light leptons or hadrons from τ 
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Particle Flow (PF) 

•  Algorithm to reconstruct all stable particles  
•  Charged and neutral hadrons 

•  Photons, electrons, muons 

•  Composite objects – Jets, τ leptons, missing transverse energy 

à PF is crucial for reconstruction of  different physics objects at CMS 
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Jets and MET 

•  Jet and missing ET resolution are significantly improved with PF  

•  More improvement of  MET resolution  
•  Using multivariate approach 

•  Improvement of  the resolution as a function of  NPU 

à Crucial for Higgsgττ analysis 
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b jet identification 

•  Important to identify jets from hadronization of  heavy flavor quarks 
•  Large lifetime and corresponding decay length 

•  High decay multiplicity and high pT of  decay products 

•  Taggers are based on  
•  track impact parameter significance 

•  secondary vertex  

•  Vertex mass 

•  Flight distance significance, etc.. 

•  Multiple ways to measure b-tag/mistag  
efficiency  
•  Using multijet and ttbar events 

•  Different measurements are combined  
based on weighted mean 

7 January 2013 Keti Kaadze, CERN 11 

Operation points  
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b jet identification 
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•  Currently available taggers are optimized for b jets from top 
quark decays 
•  More improvements for identification b jets at high pT 

•  Study characteristics of  B-hadron decays: momentum and spatial 
separation of  tracks from B hadron  

 

 



•  ~65% of  τ leptons decay hadronically (τh) 

•  Important to be able to select tau  
candidates at trigger level  
•  Narrow jet with at least one energetic track close to jet axis   

•  Veto on tracks in annulus around the leading track 

•  To allow low pT threshold hadronic τ together with another object
(electrons, muons, τh, or missing transverse energy) is required 
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Hadronic τ (τh) 



•  Using Hadrons Plus Strips algorithm 
•  Reconstruct intermediate decay products 

•  τh are reconstructed in decay modes of   
1prong+0,1,2 π0, 3 prongs 
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Identification of  τh 

•  Vertex of  the leading track is assigned to τh 

•  Using isolation to discriminate against jets 
•  Combined charged and neutral PF isolation 

within cone of  0.5 

•  Multivariate isolation 

•  Contribution from pileup is subtracted 



Identification of  τh 

•  Efficiency is measured in data and simulation 
using Zgττ in τhµ decay mode 
•  Uncertainty on τh ID is 7-8% 

•  Misidentification rate is measured 
in multi-jet data events 
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Identification of  τh 

•  Discrimination against light leptons:  
•  Inverted electron isolation requirement or MVA approach is used to 

reject electrons misidentified as τh 

•  τh leading track should neither match to segments in muon system nor 
be reconstructed as loose muon to reject muons misidentified as τh 
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Using  Zgll events 
 
Electron fake rate is  
ranging 1-15% depending 
on working point and  
pseudorapidity 
 
Muon fake rate is ~0.25%    

Zgee Zgµµ	





Identification of  light leptons 

•  Electrons are identified with cut  
based or multivariate approach 

•  Muons are identified using cut 
based approach 
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Electrons 
•  Match of  track to cluster 
•  Track quality 
•  Shower shape 
•  Isolation  
•  Conversion rejection Muons 

•  Global track 
•  Sufficient number of  pixel hits  

and hits in muons stations 
•  Isolation 



Search for MSSM Φgττ 
Phys. Lett. B 713 (2012) 68 – 7 TeV results 

http://cds.cern.ch/record/1493521?ln=en   -- 7&8  TeV results  
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Higgs in MSSM 

•  Two Higgs doublets in MSSM 
•  Five physical states: h, H, A, H± 

•  Two free parameters at tree level: 
tanβ and mA 

•  For large tanβ branching fraction to 
τ leptons and b quarks is enhanced 

•  Two production mechanisms 
•  For large tanβ either H≈A or h≈A 
•  Contribution from all three states 

is taken into account 

•  Results are interpreted in  
mh-max scenario 

•  Contribution from top (stop)  
loops yield upper bound on  
h at ~135 GeV 

7 January 2013 Keti Kaadze, CERN 19 

Msusy =1TeV
Xt = 2TeV
M2 = 200GeV
µ = 200GeV
M3 = 800GeV

mh !mZ | cos2! |
mh-max 



Analysis strategy 

•  Search is performed in different final states of  di-τ decays 
•  e+τ, µ+τ, e+µ, and µ+µ  	



•  To maximize the sensitivity to different productions of  Higgs, 
the events are categorized according to number of  b jets 
•  No b jet 

 

•  At least one b jet 

•  Topological selection of  di-τ signal-like events to reject major 
backgrounds 
•  DY+jets, W+jets, ttbar, QCD 

•  Statistical analysis with di-τ mass spectra 
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Tau pair mass reconstruction 

•  Uses likelihood method 
•  Kinematics of  tau hadronic 

decay products 

•  Missing transverse  
energy and its 
resolution  

à Estimates true di-τ  
mass per event  

à Resolution is 15-20% 
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Backgrounds 
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Backgrounds 
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Systematic uncertainties 
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Source actual value No-BTag BTag 

Luminosity (Signal & VV) 2(4)% 2(4)% 2(4)% 

Muon Id & Trigger  2% 2(4)% 2(4)% 

Electron Id & Trigger 2% 2% 2% 

Tau Id & Trigger  8% 8% 8% 

JES 2.5-5% 1% 5-10% 

b-tagging efficiency / jet 10% 2% 5-10% 

mistag rate / jet 30% 2% 2% 

TTbar Norm. 10-20% 10% 15-20% 

EWK Norm.  10-30% 10-30% 10-30% 

Z → ττ Norm. 3% 3% 5% 

QCD (Fakes) Norm. 10-20% 10% 20% 

Norm. Z : lepton fakes tau  20-30% 20-30% 20-30% 

Norm. Z : jet fakes tau 20% 20% 20% 

Electron energy scale 1.5(2.5)% shape altering unc. 

Tau energy scale 3% shape altering unc. 

theory uncertainty  value 

 µr / µf  ( bbφ ) 5 – 25 % 

 µr / µf ( gg→φ ) 8 – 15 % 
PDF + αS 2 – 10% 
UE & PS 4% 



Mass spectra 

•  Full di-τ mass in two channels and two categories 
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µ + τ 

Non-B B-Tag 



Mass spectra 

•  Full di-τ mass in two channels and two categories 
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e + τ 

Non-B B-Tag 



Results 

•  No evidence of   
Φgττ was found 
•  Combining four channes 

e+τ, µ+τ, e+µ, and µ+µ  	



•  Limits are set within 
mh-max scenario on 
tanβ vs. mA plane 
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Search for third-generation 
leptoquarks and top squarks 

http://arxiv.org/abs/1210.5629 -- 7 TeV results  
accepted by PRL 
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•  Symmetries between leptons and quarks motivate boson fields 
mediating lepton-quark interaction   
•  Suggested by GUT, composite, Technicolor, top-SU(5) models  

•  New scalar or vector bosons, leptoquarks, are predicted 
•  Fractional electric charge and non-zero lepton and baryon numbers 
•  Decay to the lepton and quark from the same generation 

with model-dependent branching fraction 

•  Dominant production of  pair of  LQ is via 
QCD interactions 
•  Cross section depends only on mass of  LQ 

•  Pair production of  third generation scalar LQ are studied 
•  Signature with two τ leptons and two b jets: eτh+2bjets and µτh+2bjets 

Motivation 
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•  Symmetries between leptons and quarks motivate boson fields 
mediating lepton-quark interaction   
•  In SUSY R-parity violating models mediator is top squark 

•  For heavy gluino scenario stop and LQ pair production  
cross sections are very similar 

•  R-parity  
•  R-parity conservation: B and L number conservation, DM candidate  

•  R-parity violation: LPS decays 

•  In case of  lepton-number violating coupling  
λ’333 stop decays to τ lepton and b quark  
•  The same final state: eτh+2 bjets and µτh+2 bjets  

Motivation 
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Sensitive observables 

•  To improve signal sensitivity 
•  Invariant mass of  τh and b jet 

•  Use ST distribution to check excess over the SM background prediction 
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Backgrounds 

•  Select events with light high-pT lepton, τ, and two b jets 

•  Backgrounds 
•  ttbar production – major bkg. 

•  Control shape and normalization  
in sample with low M(τh,b)  

•  Background due to false τh –  
W/Z+jets, QCD (small) 

•  Estimated using fake rate method 

•  Z(ττ/ee/µµ)+jets, when τh is genuine  
or misidentified from lepton 

•  Estimated from MC simulation 

•  Diboson processes estimated from MC 

•  30% uncertainty due to precision of  VV cross section measurement 
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µτhbb channel 



ttbar background  

•  ttbar normalization and shape is checked in sample rejected 
by M(τh,b) cut 

 

•  Good agreement on normalization and ST shape  
•  Yields larger uncertainty (13%/17%) than one from CMS measurement 

on µτhbb/eτhbb channels 
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W/Z+ jets background 

•  Measure jetgτh misidentification rate 

•  Select events with anti-isolated  
τh (Nanti-iso ) 

•  Use                             to obtain the background yield 
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M(τh,b) distribution 

•  M(τh,b) before applying cut 
•  Both channels combined 
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Final distribution and yields 

•  ST distribution after final 
selection M(τh,b) > 170 GeV 
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Stop vs LQ 

•  Cross sections agree within couple of  percent  
for heavy gluino scenario 
•  Dependence on tanβ and stop mixing angle is small 

•  Branching fraction is strongly dependent on  
various parameters: SU(2) gaugino mass M2, 
Higgsino mixing parameter µ, tanβ, stop  
mixing angle etc. 
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Vector LQ vs scalar LQ 

•  Kinematics and decay angles from vector  
are expected to differ from those of  scalar LQ 
•  No preferred direction of  decay particles for SLQ 
•  VLQ decay products tend to be harder 

•  Difference in pT/eta distributions of  final state objects is < 1% 
Difference in ST>800 GeV spectrum is ~2% 

à Results are interpreted for vector LQ scenario 
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The compare VLQ and SLQ: 
Models from arXiv:0502067 
CalcHEP http://hepmdb.soton.ac.uk/ 

θ – angle between LQrest frame 

      and decay particle 



Results 

•  Two channels are combined taking into account correlation 
between systematic uncertainties 
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Previous: D0 (425/pb) M(SLQ)< 210 GeV 

Previous: CDF (322/pb) M(stop)< 153 GeV 

à First limits on model arXiv:1206.0409 



limit on RPV coupling	



•  Top squarks with mass below 240 (340) GeV are excluded 
for all values of   
λ’333 > Ο(10-7) for  
M2=250 (1000) GeV 

àFirst direct limit on λ’333  
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Conclusion 

•  Search for new phenomena in final states with τ leptons and b 
jets 
à Search for Higgs boson within minimal SUSY model 

•  No excess is observed in di-τ mass spectrum   

•  The most stringent limits are set in MSSM parameter space for mh-max 
benchmark scenario 

à Search for pair production of  leptoquarks or top squarks 

•  Observed distribution of  ST agrees with the SM background prediction 

•  Limits are set on third-generation leptoquark pair production as well as 
on top squark pair production decaying within RPV scenario for a given 
parameter set 

•  First direct bounds are obtained on RPV coupling between top squark, τ 
lepton, and b quark 

•  Limits are set top-SU(5) model vector leptoquarks 
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Outlook 

•  No hits of  new physics so far   
•  Efforts are still on-going to utilize all available data at 7 and 8 TeV and 

improve analyses strategy 

•  Significant improvement  
is expected for high mass  
searches with higher  
CME run of  LHC 
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BACKUP 

7 January 2013 Keti Kaadze, CERN 45 



Tau energy scale 

•  Energy scale was estimated data and MC simulation 
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Conservative 3% uncertainty on tau energy scale 



Object ID – b jets 
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Multiple methods are used to measure b-tagging efficiency in multijet events 

•  Using relative pT or 3D  
impact parameter of  muons  
in jets to discriminate b-jets  
from light or c-jets   

•  Using lifetime tagger method 
on both muon-jet and  
inclusive jet sample   

Different measurements  
are combined based on  
weighted mean of  the  
scale factors for jets with 
30 GeV < pT < 670 GeV  
  



Object ID – b jets 
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Multiple methods are used to measure b-tagging efficiency in ttbar events 

lepton+jets and dilepton+jets  decays 
•  b-enriched jet sample 
•  Flavor tag consistency method 
•  PL ratio 
•  Flavor tag matching method 

•  Combined scale factor is derived as a 
weighted mean of  scale factors from two  
best measurements from two samples  
yielding ~4% uncertainty 

•  Scale factor as function of  discriminator  
value is available for MVA methods 



b-tagging @ high pT 

•  Performance of  b-tagging algorithms are optimized for 
medium pT range 
•  At high and low pT both mistag rate goes up and efficiency degrades 
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Optimization for jet-track association 

•  Selection for tracks assocated to jets is  
optimized for high pT jets – described  
in AN-12-019 
•  Both pT(trk) and ΔR can be used to improve  

performance 

•  Using simple linear parameterization 
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Performance  

•  TC-taggers 
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BACKUP for Higgs->ττ 
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Implications of  125 GeV boson 

•  The main parameters in MSSM are 
•  at tree level: MA and tanβ 

•  at loop level: MSUSY soft-SUSY-breaking squark mass  
of  the third generation and Xt stop mixing parameter 

•  All scenarios with some degree of  mixing one can get Mh~125 GeV 
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Allowed 

Constraints on|Xt| vs. Mstop 

S. Heinemeyer, et al. arXiv:1112.3026 

Allowed 

Modified mh,max scenario 
Xt ~1300 GeV 

Msusy =1TeV
Xt = 2TeV
M2 = 200GeV
µ = 200GeV
M3 = 800GeV

mh,max 

mA 

mh,max Y. Linke, G. W. ’12 



Search sensitivity 

•  Limits for different category/channel 
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Cross section of  gg fusion 

•  Cross section of  pseudo-scalar MSSM Higgs boson A in mh-
max scenario 
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4FS vs 5FS 

•  Comparison of  the NLO 4FS and NNLO 5FS for the production of  
pseud-scalar Higgs boson in association with b quarks in mh-max scenario 
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Theory uncertainty on σ(gggbbΦ) 
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MSSM vs SM cross section 

•  Production cross section for the SM Higgs boson and the pseudo-scalar 
MSSM Higgs boson A 
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Effect of  b-loop on acceptance of  gggΦ signal  

7 January 2013 Keti Kaadze, CERN 59 

For inclusive selection acceptance changes by 3% 

MH=140 GeV MH=400 GeV 

arXiv:1201.3084 [hep-ph] 



Theory Uncertainties on σ(pp → bbΦ) 



Effect of  b-loop on acceptance of  gg → H signal 

arXiv:1201.3084 [hep-ph] 

For inclusive selection acceptance changes by 3% 

MH=140 GeV MH=400 GeV 



Backgrounds – Wjets   
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Transverse mass from Wjets and Wbb sample 



BACKUP for LQ/Stop 
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W/Z + jets ST Shapes 

•  Not enough statistics in MC after the main selection to get the W+jet and 
Z+jet ST shapes with precision 

•  Measure weight in independent sample 

•   Z+1 jet events 

•  ST distr. is obtained by applying weights on  
control sample 

•  At least two jets, no-btagging required 
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Validate procedure on  
anti-isolated control sample 
•  No overlap with main sample 
•  No overlap with sample used to 

compute weights 
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Systematic uncertainty on ST shape 
determination 

•  Parameterize ST shape and compute ±1σ variation of  the fit 
taking into account errors on the fitting parameters 
•  Novosibirsk function – Gaussian with exponential tail 

•  Three parameters: mean, sigma, tail parameter  

•  Validate fitting function on control  
sample 
•  Relaxing btagging requirement 

•  Good agreement between data and MC  
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Data-MC fit comparison 

•  Very good agreement between data and MC fits 
•  Red – data 

•  Blue – MC 

•  For independent sample  
the function predicts  
the tail well 

•  Difference between data  
and MC at the tail is small 
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Fitting before M(tau,b) cut 

•  Obtain fitting parameters as a function of  tau pT 

•  Extrapolated parameters  
for tau pT>50 GeV 
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Mean Sigma Tail Par. 

Tau pT > 50 GeV  
•  Blue function -- the one fitted on the sample 
•  Red dashed function -- the one obtained by 

extrapolating the parameters 

Conclusion: 
* Difference between shapes (red and blue) is very 
small and can be neglected 
* Parameters varied within uncertainties yields to 
shape systematic uncertainty on W/Z+jets 
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Fitting after final selection 

•  Nominal distribution and ±1σ variation of  fit parameters for systematic 
uncertainties  
•  Effect of  these uncertainties is small 
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RPV interactions 
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From J. Evans & Y. Kats 



LQ vs stop kinematics I 

•  First and second b quark pT 
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LQ vs stop kinematics II 

•  Lepton pT and ST 
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SLQ vs VLQ I 
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τ pT and eta  

b quark pT and eta  



SLQ vs VLQ II 

•  ΔR and ST  
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IP cut efficiency 

•  Impact parameter cut efficiency as a function of  the RPV 
coupling λ’333 (RPV stop lifetime) 
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limit on branching fraction	



•  Limit on β = BR(LQ3gτ b) 
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